Abstract

This study looks into the resource assessment, technology economics and modeling of different energy alternatives and proposes a rechargeable battery storage-based large-scale wind/photovoltaic hybrid power system to meet an average electrical load demand of 2.4 MW and peak load of 2.9 MW for a remote rural district in Ethiopia called Geladin. The district is 682 km away from nearby grid. The site enjoys high solar and wind resources that can be harnessed for electric power generation to electrify the community. HOMER simulation software is used for optimal sizing and techno-economic analysis. The diesel generator is used as back up to fill the gaps in case both resources are out. Average monthly solar irradiation data of 6.2 kWh/m2 is determined from measured sunshine duration data by implementing a suitable specific model for the site. NASA satellite based estimated wind speed data of 10 years average at hub height of 50 m for the site in question is extracted from the SWERA (Solar and Wind Energy Resource Assessment) database (with annual average of 6.1 m/s) and its weigh-bull distribution parameter, k of 1.98 is estimated which indicates a fair wind speed distribution of the site to generate electric power using wind turbine. The proposed optimal system results electricity generation indicates that 92% from wind turbine, 3% from photovoltaic, 5% from diesel generator and managed to obtain a much lower cost of energy (COE = 0.11USD/kWh) than other alternatives investigated in this study such as grid extension and diesel generator.

Highlights

  • Ethiopia is a landlocked Sub Saharan country located in the eastern horn of Africa with a total surface area of 1.1 million square kilometers and a population of around 90 million in 2014 with annual population growth rate of 2.89% [1] [2] [3]

  • This study looks into the resource assessment, technology economics and modeling of different energy alternatives and proposes a rechargeable battery storage-based large-scale wind/photovoltaic hybrid power system to meet an average electrical load demand of 2.4 MW and peak load of 2.9 MW for a remote rural district in Ethiopia called Geladin

  • The proposed optimal system results electricity generation indicates that 92% from wind turbine, 3% from photovoltaic, 5% from diesel generator and managed to obtain a much lower cost of energy (COE = 0.11USD/kWh) than other alternatives investigated in this study such as grid extension and diesel generator

Read more

Summary

Introduction

Ethiopia is a landlocked Sub Saharan country located in the eastern horn of Africa with a total surface area of 1.1 million square kilometers and a population of around 90 million in 2014 with annual population growth rate of 2.89% [1] [2] [3]. Better access to sustainable energy service for rural people in Ethiopia is pre-requisite for sufficient supply of lighting, communication systems, and the development of income generating activities as well as improvement of the public health status. It is widely accepted that Renewable Energy System (RES) has a large potential to contribute to the strengthening and development of national sustainable energy infrastructures in many countries in the world by securing better energy independence through the mobilization of domestic renewable energy resources especially in rural areas [4] [5]. Small businesses, which rely heavily on family labor, can increase their production hours once electricity becomes available

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call