Abstract
In order to predict the die swell seen in the actual polymer processing, the planar, the capillary and the annular die swell simulations have been performed by the streamline‐upwind finite element method with the subelements for stress components, which was shown effective to calculate up to high Weissenberg number (We) for the entry flow simulation in an earlier study. The calculation using the Giesekus model, which is the differential type viscoelastic model, was found feasible over hundreds of We in the planar and the capillary die swell simulations as long as the primary normal stress difference was not so large. The shape of free surface at high We under the condition of no gravitation once showed the maximum swell and became an equilibrium one after shrinking back a little. This tendency became remarkable for the model with larger We and larger primary normal stress difference. Through the examination of the velocity profile, it was found that the velocity near the free surface was accelerated durin...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nihon Reoroji Gakkaishi(Journal of the Society of Rheology, Japan)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.