Abstract

Owing to the recent global spread of the new coronavirus SARS-CoV-2, the development of technology to effectively detect viruses in crowded public places is urgently needed. In this study, a three-stage high-volume bioaerosol sampler was developed for the size-selective sampling of bioaerosols through the suction of air at a high flow rate of 1000 L/min. In stage 1, an omnidirectional inlet cyclone separator that can draw air from all directions was applied to collect bioaerosols larger than 10 μm in the collection fluid. In stage 2, an axial flow cyclone separator was used to collect bioaerosols sized between 2.5 and 10 μm in the collection fluid. In stage 3, bioaerosols smaller than 2.5 μm were collected on a filter and extracted in a solution through an elution process using a sodium phosphate buffer. To simulate the suspension of bioparticles including viruses that are attached to other particles in the atmosphere, the aerosol samples were prepared by coagulating aerosolized bacteriophages with Arizona test dust. Then, the coagulated particles were collected for 30 min using the developed bioaerosol sampler, and the samples collected in each stage were analyzed via polymerase chain reaction (PCR) method. The PCR analysis results confirmed that the high-volume bioaerosol sampler enables size-selective bioaerosol sampling even at a high airflow rate of 1000 L/min. The developed high-volume bioaerosol sampler will be useful in detecting viruses through PCR analysis because it can collect bioaerosols within a specific size range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.