Abstract

The use of engineered cementitious composite (ECC) is increasing owing to its high tensile strength and ductility; however, little attention has been paid to substitutes for its ingredients. Blast furnace slag instead of fly ash and polypropylene (PP) fibres instead of polyvinyl alcohol (PVA) fibres may be considered to be appropriate alternative substitutes. Therefore, the present study aimed to produce an ECC with a large proportion of slag and PP fibres that would achieve high strength and ductility characteristics and create controlled microcracking behaviour under tensile stresses (i.e. strain-hardening behaviour). The specimens made from ECC thus prepared were subjected to compressive, four-point bending, X-ray diffraction (XRD) and scanning electron microscope (SEM) tests. The results showed that a slag/cement ratio of 0.5 in ECC led to the highest compressive strength (55.6 MPa) and modulus of rupture (MOR) (7.0 MPa), while the corresponding energy absorption was fairly high. The results of XRD and SEM analyses indicated that applying the slag/cement ratio of 0.5 led to a homogenous cement matrix and produced the highest calcium-silicate-hydrate (C-S-H) in the ECC microstructure. Finally, to predict the load–deflection of specimens, a three-part model was proposed and verified with other available data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.