Abstract

A multi-nozzle layered mesh inertial filter, developed by the authors based on inertial filter technology for separating ultrafine particles (UFPs) at a moderate pressure drop, was investigated in an attempt to improve the steepness of the separation efficiency curve by combining an inertial filter and an impactor. In this system, the separation curves overlap each other, while maintaining about a 100 nm difference in cutoff size dp50. Such a combination, which we refer to as a ‘hybrid inertial filter’, was validated for a single nozzle geometry. Using a multi nozzle geometry, it was scaled up to a high volume air sampling flow rate of 400 l min−1 at a pressure drop of <15 kPa. An air sampling unit designed for a commercial portable high volume air sampler, consisting of a multi-cyclone (dp50 = 1 µm) and a hybrid inertial filer (dp50 = 130 nm), was devised and its performance was compared with that for conventional air samplers. The scaled up version of the hybrid inertial filter using multi-nozzle geometry was confirmed. The features of the hybrid inertial filter included the suppression of the bouncing of particles with sizes >300 nm, a steeper collection efficiency curve and less pressure drop than those of a previous type of inertial filter. The ambient PM0.13 evaluated for the present unit was found to be in good agreement with values obtained for 2 different types of cascade air samplers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call