Abstract
Triboelectric Nanogenerators (TENG) suitable for mechanical energy harvesting typically have ultra-high open-circuit voltage in several hundreds of volts, challenging the energy extraction circuit (EEC) design required for charging load battery/capacitor. Here, we present a novel multi-shot switched EEC that extracts energy in multiple discrete steps to regulate the TENG voltage below the breakdown limit of the technology (70 V in our case), making it suitable for Integrated Circuit (IC) implementation. The proposed strategy maintains high TENG voltage just below the breakdown limit to offer a high electrostatic retardation, enhancing the work done against it by the mechanical source in the form of transduced electrical energy. Mathematical derivation of the circuit’s output shows a constant transduction power at all load voltages, fully eliminating Maximum Power Point (MPP) Tracking and saving power for the same. The design and simulation of the proposed EEC in TSMC 0.18 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> BCD process achieve a maximum power conversion efficiency of 63.3% and a 1.91x gain over even an <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ideal</i> conventional Full Wave Rectifier (FWR) circuit at its optimal MPP load (gain will be higher for a real FWR implementation).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.