Abstract

High-temperature superconducting (HTS) tapes currently used for the manufacture of resistive fault current limiters use metallic substrates upon which the HTS film is grown. Because the alloys used for these substrates, such as Hastelloy, have a rather high resistivity and low thermal conductivity, the HTS film must be protected by a more conducting metallic layer acting as a shunt to avoid burn out during a fault. This shunt layer limits severely the electric field generated during the fault to values smaller than 100 V/m. A long length of tape is then necessary to achieve the desired high voltage. We show here that by using a high thermal diffusivity dielectric substrate such as sapphire, it is possible to obtain much higher electric fields of up to several kilovolts per meter.

Highlights

  • Second-generation high-temperature superconducting (HTS) tapes comprise a high-resistivity low thermal conductivity metallic substrate such as Hastelloy, buffer layers, a RBCO film and a stabilizing metallic layer acting as a shunt

  • This architecture is well suited for applications such as superconducting cables, transformers, and high magnetic field coils. It is not well suited for superconducting fault current limiter (SFCL) applications. This is because the highly conductive shunt layer prevents the development of the desired high electric field when a fault triggers the return of the SFCL to the normal state

  • The electric field reached in state-of-the-art HTS tapes used for SFCL applications is limited to 100 V/m

Read more

Summary

Introduction

Second-generation high-temperature superconducting (HTS) tapes comprise a high-resistivity low thermal conductivity metallic substrate such as Hastelloy, buffer layers, a RBCO film and a stabilizing metallic layer acting as a shunt. This architecture is well suited for applications such as superconducting cables, transformers, and high magnetic field coils. It is not well suited for superconducting fault current limiter (SFCL) applications. This is because the highly conductive shunt layer prevents the development of the desired high electric field when a fault triggers the return of the SFCL to the normal state. We show here that by replacing the low thermal conductivity substrate currently used by a high thermal conductivity, high-diffusivity dielectric substrate, it is possible to achieve electric fields of several kilovolts per meter, and that the

Architecture and Operation of a Dielectric-Based SFCL Element
The Role of the Substrate Diffusivity
Maximum Power
Shunt Optimization for Achieving Highest Possible Electric Field
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.