Abstract

Cryogenic dielectric insulation skills play a significant role in the development of superconducting electric equipment for transmission and distribution electric network. Nowadays, newly developed nano-composites have shown enhanced electrical, thermal, and mechanical properties of polymer insulation materials. And the application of nano-composites in high voltage power systems could be implemented in the near future. Among the various nano-composites, epoxy nano-composites have been paid much attention as a new insulating material for high voltage insulation. In this paper, we presented experimental results of epoxy nanocomposites in liquid nitrogen and determined the possible applications of nano-composites as insulating material for superconducting equipment. In order to determine their dielectric breakdown properties in liquid nitrogen, various kinds of epoxy based nano-composites have been made by mixing SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> , TiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> fillers, respectively. AC withstand voltage test and partial discharge (PD) inception voltage tests have been performed to verify the insulation breakdown characteristics of nano-composites in cryogenic environment. Consequently, it was deduced that the breakdown strength of epoxy nano-composites have been improved compared to epoxy with micro-fillers in cryogenic environment. And epoxy nano-composites immersed in liquid nitrogen showed a similar breakdown voltage characteristic when compared with that of insulating oil. In addition, the effects of nano-composites have been varied according to the concentration of nano-fillers and their content of fillers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.