Abstract

We have developed an energy analyzer, High Voltage-Cylinder Sector Analyzer 300/15, for electron kinetic energies up to 15 keV. It is especially suited for hard x-ray photoelectron spectroscopy, but also for ultraviolet and soft x-ray photoelectron spectroscopy (ultraviolet photoemission spectroscopy, x-ray photoemission spectroscopy), Auger electron spectroscopy, and reflection high energy electron spectroscopy. The analyzer is based on a cylinder sector with 90 degrees deflection, 300 mm slit-to-slit distance, and a four-element pre-retarding lens system with 50 mm sample-to-lens distance. The result is a very compact design of the analyzer that is easily integrated into a multipurpose experiment with different techniques. A low noise/low drift electronics is capable of continuous energy scans from 0 to 15 keV using nonlinear lens curves. The first analyzer is allocated at the Spanish CRG SpLine beamline at the ESRF at an end station where simultaneous surface x-ray diffraction is possible. The analyzer is operated routinely since 2006 up to 15 keV electron kinetic energy, expanding the achievable electron kinetic energy range compared to other commercial analyzers. In this work we present a detailed description of the developed electron analyzer. The analyzer capabilities, in terms of energy resolution and transmission, are shown by using an electron gun, an ultraviolet-discharge lamp, and hard x-ray synchrotron radiation as excitation sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.