Abstract

For the purpose of effectively utilizing the visible light, photoelectrochemical (PEC) detection represents a unique detection signal and different energy form of the excitation source. In this work, ultrathin MoS2 nanosheets with narrow band gap were successfully fabricated by a facile C3N4 sacrificial template assisted thermolytical approach. Upon immobilizing glucose oxidase, excellent photocatalytic activity towards glucose is achieved in neutral buffer solution. As a novel visible light sensitive photocatalytic material, ultrathin MoS2 nanosheets present a detection limit of ~0.61nM, which is much lower than those with the similar configurations reported previously. Based on the excellent anti-interference property, the feasibility of applying the proposed sensor to determine glucose in human serum is further demonstrated. This work provides new insight into the fabrication of promising visible light sensitive two-dimensional layered transition-metal chalcogenides nanostructures for construction of photoelectrochemical biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.