Abstract

Mixed phases Co2+-doped TiO2 nanoparticles have been prepared by a novel method combined with sol–gel and hydrothermal methods. The section of sol–gel method, sol, provides an unstable colloidal reaction system for the next reaction process. The hydrothermal method is to treat the above reaction system to prepare undoped and doped samples. The as-prepared samples have been characterized by XRD, SEM, TEM, HRTEM and UV–vis spectroscopy. The results show that the as-prepared samples contain three titania polymorphs: brookite, rutile and anatase phases. These titania polymorphs probably form polymorph-junctions that can extend the lifetime of photogenerated electron–hole pairs. The photocatalytic activity has been evaluated by the photocatalytic degradation of Rhodamine B in air under visible-light irradiation. The degradation results indicate that the photocatalytic activity of as-prepared samples is higher than that of Degussa P25, especially the doped sample. This is ascribed to the fact that the phases with smaller band gap can enhance visible-light photocatalytic activity, the polymorph-junctions effectively extend the photoelectron lifetime and the nano size effect and Co-doping induce the shift of the absorption edge into the visible-light region. Furthermore, the XRD, SEM, and TEM data indicate that Co2+-doping results in the decrease of particle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.