Abstract
The modeling of high velocity impact is an important topic in impact engineering. Due to various constraints, experimental data are extremely limited. Therefore, detailed numerical simulation can be considered as a desirable alternative. However, the physical processes involved in the impact are very sophisticated; hence a practical and complete reproduction of the phenomena involves complicated numerical models. In this paper, we present a smoothed particle hydrodynamics (SPH) method to model two-dimensional impact of metal sphere on thin metallic plate. The simulations are applied to different materials (Aluminum, Lead and Steel); however the target and projectile are formed of similar metals. A wide range of velocities (300, 1000, 2000, and 3100 m/s) are considered in this study. The goal is to study the most sensitive input parameters (impact velocity and plate thickness) on the longitudinal extension of the projectile, penetration depth and damage crater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.