Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1 (MEAM1) is invasive and adaptive to varied environments throughout the world. The adaptability is closely related to genomic variation such as single nucleotide polymorphisms (SNPs) and insertions/deletions (indels). In order to elucidate the feature of SNPs and indels in MEAM1, and reveal the association between SNPs/indels and adaptive capacity to various environments, a computational approach with QualitySNP was used to identify reliable SNPs and indels on the basis of 9110-expressed sequence tags of MEAM1 present in the NCBI database. There were 575 SNPs detected with a density of 10.1 SNPs/kb and 6.4 SNPs/contig. Also, 237 transitions (39.3%) and 366 transversions (60.7%) were obtained, where the ratio of transitions to transversions was 0.65:1. In addition, 581 indels with a density of 14.1 indels/kb and 9.2 indels/contig were detected. Collectively, it showed that invasive MEAM1 has high SNPs density, and higher SNPs percentage than non-invasive B. tabaci species. A high SNPs density/percentage in MEAM1 yielded a high genomic variation that might have allowed it to adapt to varied environments, which provides some support to understand the invasive nature of MEAM1 at the genomic level. High levels of genomic variation are implicated in the level of adaptive capacity and invasive species are thought to exhibit higher levels of adaptive capacity than non-invasive species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.