Abstract

As one of the most common forms of waste, waste PET is a serious pollutant in natural and human living environments. There is an urgent need to recycle PET. For this study, the complete degradation of PET was realized at a low temperature. A lipophilic hydrophobic membrane was formed on the surface of a stainless steel mesh (SSM) using a simple dip coating method, and an oil-water separation material was successfully prepared. After loading with degradation products, the surface roughness of SSM increased from 19.09 μm to 62.33 μm. The surface changed from hydrophilic to hydrophobic, and the water contact angle increased to 123°. The oil-water separation flux of the modified SSM was 9825 L/(m2·h), and the separation efficiency was 98.99%. The modified SSM had good reuse performance. This hydrophobic modification method can also be used to modify other porous substrates, such as activated carbon, filter paper, foam, and other materials. The porous substrate modified by the degradation product of waste PET was used to prepare oil-water separation materials, not only solving the problem of white pollution but also reducing the dependence on non-renewable resources in the conventional methods used for the preparation of oil-water separation materials. This study provides new raw materials and methods for the industrial production of oil-water separation materials, which have important application prospects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.