Abstract

For relatively electron-rich corrole ligands, the halfwave potentials for oxidation of Cu(III), Sn(IV)Ph, Fe(IV)Ph, and Fe(IV)–O–Fe(IV) complexes are significantly lower than those of Sn(IV)Cl, Fe(IV)Cl, Mn(IV)Cl, and Cr(V)(O) complexes, suggesting that the corrole ligand is relatively electron-rich or ‘innocent’ in the former group of complexes and that it is relatively electron-deficient or ‘noninnocent’ in the latter group. Both the formal charge of the central metal ion and the nature of the axial ligand, if any, appear to be key determinants of the electronic character of the corrole ligand in metallocorrole complexes, a theme that has interesting resonances with recent findings on high-valent heme protein intermediates. However, for very strongly electron-deficient ligands such as meso-tris(pentafluorophenyl)corrole (TPFPC) and β-octabromo- meso-tris(pentafluorophenyl)corrole (Br 8TPFPC), which cannot sustain significant radical character, the various metal complexes all exhibit comparable halfwave potentials for oxidation and the ligand may be considered to be relatively innocent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.