Abstract

The evolution of adhesion and friction in contact-mode micromachines operated in high vacuum was studied by tracking changes in the adhesive pressure, interfacial shear strength, and static coefficient of friction with accumulating sliding cycles. Low adhesion and high static friction observed during the initial stage of sliding were followed by monotonically intensifying adhesion and decreasing friction until reaching an equilibrium stage at steady-state sliding. This trend revealed the existence of two friction regimes in which asperity deformation and adhesion were the dominant friction mechanisms. Scanning electron microscopy and atomic force microscopy observations indicated that sliding resulted in physical and chemical surface changes. The evolution of the adhesion and friction properties with sliding cycles is attributed to the increase of both the real contact area and the work of adhesion due to nanoscale surface smoothening and the removal of contaminant adsorbents, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.