Abstract
BackgroundPredictive factors for the rate of decline in kidney allograft function beyond the first post-transplant year have not been thoroughly studied. We aimed to determine whether a single measurement of serum and urinary interleukin 2, interleukin 8 and interleukin 10 at 1–15 years after kidney transplantation could predict a decline in estimated glomerular filtration rate (eGFR) over a 2-year period.ResultsGreater serum concentrations of interleukin 8 and interleukin 10 in 30 recipients of kidney allograft at enrollment were associated with lower eGFR after 1 year (beta = − 0.616, p = 0.002 and beta = − 0.393, p = 0.035, respectively), whereas serum concentrations of interleukin 8 also demonstrated significant association with eGFR after 2 years of follow-up (beta = − 0.594, p = 0.003). Higher urinary interleukin 2 concentrations were associated with lower eGFR at baseline (rho = − 0.368, p = 0.049) and after the first (beta = − 0.481, p = 0.008) and the second year (beta = − 0.502, p = 0.006) of follow-up. Higher urinary interleukin 2 concentrations predicted certain decline in eGFR of ≥ 25% from baseline after 1 year of follow-up in logistic regression: odds ratio = 2.94, confidence interval 1.06–8.18, p = 0.038. When combined with time after transplantation, urinary interleukin 2 demonstrated good accuracy in predicting rapid decline in eGFR by > −5 mL/min/1.73 m2/year (area under the receiver-operator characteristic curve: 0.855, confidence interval 0.687–1.000, and p = 0.008).ConclusionsOur findings suggest that urinary interleukin 2 in the late period after kidney transplantation has promise in identifying patients who are at risk for progressive loss of graft function in a short-time perspective and need closer monitoring.
Highlights
Predictive factors for the rate of decline in kidney allograft function beyond the first post-transplant year have not been thoroughly studied
Baseline characteristics of patients According to the definition of chronic kidney disease [19] we categorized transplant patients into “normal glomerular filtration rate (GFR)” and “low GFR” subsets defined as estimated glomerular filtration rate (eGFR) ≥ 60 mL/ min/1.73 m2 and < 60 mL/min/1.73 m2
This paper explored the question of whether serum and urinary IL-2, IL-8 and IL-10 in the late postoperative period could predict a decline in GFR over a follow-up period of 2 years
Summary
Predictive factors for the rate of decline in kidney allograft function beyond the first post-transplant year have not been thoroughly studied. We aimed to determine whether a single measurement of serum and urinary interleukin 2, interleukin 8 and interleukin 10 at 1–15 years after kidney transplantation could predict a decline in estimated glomerular filtration rate (eGFR) over a 2-year period. Biopsy is prone to sampling error and carries certain unavoidable risks. These clinical limitations have inspired a search for noninvasive biomarkers. Such biomarkers for transplanted kidney can help better understand pathogenesis, assess immune risk, detect early injuries, make
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.