Abstract

BackgroundPredictive factors for the rate of decline in kidney allograft function beyond the first post-transplant year have not been thoroughly studied. We aimed to determine whether a single measurement of serum and urinary interleukin 2, interleukin 8 and interleukin 10 at 1–15 years after kidney transplantation could predict a decline in estimated glomerular filtration rate (eGFR) over a 2-year period.ResultsGreater serum concentrations of interleukin 8 and interleukin 10 in 30 recipients of kidney allograft at enrollment were associated with lower eGFR after 1 year (beta = − 0.616, p = 0.002 and beta = − 0.393, p = 0.035, respectively), whereas serum concentrations of interleukin 8 also demonstrated significant association with eGFR after 2 years of follow-up (beta = − 0.594, p = 0.003). Higher urinary interleukin 2 concentrations were associated with lower eGFR at baseline (rho = − 0.368, p = 0.049) and after the first (beta = − 0.481, p = 0.008) and the second year (beta = − 0.502, p = 0.006) of follow-up. Higher urinary interleukin 2 concentrations predicted certain decline in eGFR of ≥ 25% from baseline after 1 year of follow-up in logistic regression: odds ratio = 2.94, confidence interval 1.06–8.18, p = 0.038. When combined with time after transplantation, urinary interleukin 2 demonstrated good accuracy in predicting rapid decline in eGFR by > −5 mL/min/1.73 m2/year (area under the receiver-operator characteristic curve: 0.855, confidence interval 0.687–1.000, and p = 0.008).ConclusionsOur findings suggest that urinary interleukin 2 in the late period after kidney transplantation has promise in identifying patients who are at risk for progressive loss of graft function in a short-time perspective and need closer monitoring.

Highlights

  • Predictive factors for the rate of decline in kidney allograft function beyond the first post-transplant year have not been thoroughly studied

  • Baseline characteristics of patients According to the definition of chronic kidney disease [19] we categorized transplant patients into “normal glomerular filtration rate (GFR)” and “low GFR” subsets defined as estimated glomerular filtration rate (eGFR) ≥ 60 mL/ min/1.73 m2 and < 60 mL/min/1.73 m2

  • This paper explored the question of whether serum and urinary IL-2, IL-8 and IL-10 in the late postoperative period could predict a decline in GFR over a follow-up period of 2 years

Read more

Summary

Introduction

Predictive factors for the rate of decline in kidney allograft function beyond the first post-transplant year have not been thoroughly studied. We aimed to determine whether a single measurement of serum and urinary interleukin 2, interleukin 8 and interleukin 10 at 1–15 years after kidney transplantation could predict a decline in estimated glomerular filtration rate (eGFR) over a 2-year period. Biopsy is prone to sampling error and carries certain unavoidable risks. These clinical limitations have inspired a search for noninvasive biomarkers. Such biomarkers for transplanted kidney can help better understand pathogenesis, assess immune risk, detect early injuries, make

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call