Abstract

We demonstrate active control of the plasmonic response from Au nanostructures by the use of a novel multiferroic substrate-LuFe(2)O(4) (LFO)-to tune the surface-enhanced Raman scattering (SERS) response in real time. From both experiments and numerical simulations based on the finite-difference time-domain method, a threshold field is observed, above which the optical response of the metal nanostructure can be strongly altered through changes in the dielectric properties of LFO. This offers the potential of optimizing the SERS detection sensitivity in real time as well as the unique functionality of detecting multiple species of Raman active molecules with the same template.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.