Abstract

At endogenous brain concentrations, the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA) is a preferential antagonist of the α7 nicotinic acetylcholine receptor (α7nAChR). In the present study, male Wistar rats were fed a high tryptophan diet (adding 0.1-1.5% tryptophan) for 24 h to examine (i) the effect of increased tryptophan on extracellular dopamine (DA) and KYNA levels and (ii) to determine any possible interactions between DA and KYNA. Brain KYNA levels were dose-dependently increased by tryptophan intake, and these increase were consistent with kynurenine (KYN), the precursor to KYNA, levels in the brain, plasma and liver. Administration of the 1.5% tryptophan added diet reduced the extracellular DA level to 60%, and increased the extracellular KYNA to 320% in the striatum. The DA reduction was attenuated through inhibiting KYNA synthesis with 2-aminoadipic acid. These results indicate that a high tryptophan diet can induce KYNA production and suppress DA release. One possible mechanism is that as more KYN is metabolized from the high doses of tryptophan in the liver and released into the blood stream, KYNA production in astrocytes is enhanced and the increased extracellular KYNA inhibits DA release by blocking α7nAChRs. Dietary manipulation of KYNA formation in astrocytes may offer a unique strategy to modulate DA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call