Abstract
This work reports the development of poly(lactic acid) (PLA) formulations with improved toughness by ternary blends with poly(3-hydroxybutyrate) (PHB) and two different flexible polyesters derived from succinic acid, namely poly(butylene succinate) (PBS) and a copolymer, poly(butylene succinate-co-adipate) (PBSA). The main aim of this work is to increase the low intrinsic toughness of PLA without compromising the thermal properties by manufacturing ternary blends using epoxidized vegetable oils as compatibilizer agents. The ternary blends were manufactured by reactive extrusion in a co-rotating extruder and were subjected to mechanical, thermal, thermos-mechanical and morphology characterization. The obtained results confirm that these two succinic acid-derived polymers, i.e., PBS and PBSA, positively contribute to increase ductile properties in ternary blends with PLA and PHB with a subsequent improvement on impact toughness. In addition, both epoxidized vegetable oils, ELO and ESBO, are responsible for somewhat compatibilization between all three polyesters in blends which gives improved ductile properties with regard to uncompatibilized ternary blends. In addition, the temperature range in which these materials can be used is broader than ternary blends with other flexible polyester such as poly(e-caprolactone), as both PBS and PBSA melt at about 100 °C. These PLA-based materials with improved impact properties offer interesting applications in the packaging industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.