Abstract

Torque motor is one key component that directly influences the dynamic performance of jet pipe servo valve in aircraft. In this paper, a novel torque motor with hybrid-magnetization pole arrays is proposed. By changing the magnetization patterns of permanent magnets, the torque motor can significantly improve the output torque by range of 47–52% compared with traditional designs, while maintaining the system size and mass. The design concept and operating principle of the torque motor is presented. The magnetic field distribution is formulated analytically with equivalent magnetic circuit. Different from conventional study, the flux leakage of the permanent magnets and coils is included to improve the model precision. Subsequently, the output torque is derived mathematically from the airgap flux. Following that, the numerical calculation is conducted to validate the mathematical models of magnetic field and output torque. The design optimization is then carried out. One research prototype that can be mounted with either conventional magnet or the proposed hybrid array has been developed. The test rigs are constructed and experiments are conducted on the prototype. Both numerical computation and experimental results verify the significant improvement of torque generation of the proposed hybrid magnetization torque motor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call