Abstract

Electro-mechanical flight actuators (EMFAs) are core flight-critical vehicle components. Fly-by-wire or fly-by-light control of EMFAs is performed by flight management systems (flight, mission, propulsion, and integrated controls that manage any combination of specific flight, mission, and propulsion functions). Reported here are novel results in the analysis of EMFAs with permanent-magnet synchronous motors, with particular interest in the application of brushless high-torque density motors which have superior characteristics compared with other state-of-the-art motor technologies. It is shown that due to nonlinearities and bounds, new control algorithms must be developed and implemented to achieve a spectrum of performance and requirements for EMFAs. A number of important issues in control, analysis, model development, integration, and verification are studied. Tracking control algorithms are synthesized, stability studied, and novel analysis results are reported. Advanced computer-aided engineering software tools and emerging simulation-based design environments are used to guarantee high fidelity modeling and analysis within data intensive simulation. Proof-of-concept demonstration testbeds for the design of advanced EMFAs and their components are developed, and EMFA imitator performance thoroughly studied. Verification of the concepts reported are formed and documented. Precise tracking, disturbance attenuation, accuracy, stability, robustness, and excellent acceleration capabilities are reported. A demonstration is performed to substantiate the theoretical analyses to add credence to its applicability as an approach and method that the designer of future EMFAs can use to design a new class of actuators for aircraft flight control surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.