Abstract
The amphiphilic graft copolymer poly (lactic-co-glycolic acid)-g-dextran (Dex-PLGA) was successfully synthesized to fabricate micelles for the delivery of paclitaxel with low critical micelle concentration (CMC). The sizes of paclitaxel-loaded Dex-PLGA (Dex-PLGA/PTX) micelles were kept below 100nm with a relatively narrow size distribution. This novel PTX nano-formulation was found to exhibit slightly stronger in vitro cytotoxicity against SKOV-3, OVCAR-8 and MCF-7 cells with Taxol®. However, it could overcome the drug resistance of multi-drug resistant human breast carcinoma cells (MCF-7/Adr cells). The maximum tolerated dose (MTD) of Dex-PLGA/PTX after a single dose was more than 200mg PTX/kg, which were 8-fold higher than that of Paclitaxel Injection. The in vivo antitumor activity results indicated that Dex-PLGA/PTX micelles treatments effectively suppressed the tumor growth and highly reduced the toxicity against animals than Taxol® and could eliminate the SKOV-3 tumor by highly increasing the drug dose. From the Clinical EditorChemotherapy for cancer has always been hampered the toxic side effect of the drugs. Nanotechnology has helped to produce various drug delivery systems to minimize these side effects. In this article, the authors designed dextran-based micelles loaded with paclitaxel. They showed effective anti-tumor activity in both in vitro and in vivo experiments with significant lower systemic toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanomedicine: Nanotechnology, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.