Abstract

When coral planulae, which use a horizontal mode of symbiont transmission, are inoculated with Symbiodinium, they suffer greater oxidative stress under strong light or high-temperature stress than non-symbiotic counterparts. Thus, dinoflagellate symbionts may become a source of reactive oxygen species (ROS) under stress. However, it remains unknown whether vertically transmitted symbionts negatively affect coral larvae under stress. We investigated the thermal tolerance of symbiotic planulae of a vertical transmitter coral, Pocillopora damicornis. P. damicornis larvae, which have a large number of symbionts, survived the high-temperature treatment (32 °C) for 2 weeks. Significant reductions in Symbiodinium cell density were observed, but these did not lead to increased mortality of planulae during the 2-week experimental period. Although no significant difference was detected in the percentage of apoptotic cells between temperature treatment groups, pre-bleaching larvae exposed to 31 °C tended to exhibit higher percentages of apoptotic (TUNEL-positive) cells in the gastrodermis than 32 °C-treated larvae, which contained reduced numbers of Symbiodiniumcells. Symbiotic larvae of P. damicornis survived well under high-temperature conditions, although their Symbiodinium cell density decreased. This suggests that P. damicornis larvae have the capacity to reduce the symbiont cell density without a harmful effect on their survivorship under thermal stress. Further studies on antioxidant systems and possible suppression of apoptotic pathways are necessary to elucidate the mechanism underlying the high thermal tolerance of symbiotic larvae of P.damicornis.

Highlights

  • When coral planulae, which use a horizontal mode of symbiont transmission, are inoculated with Symbiodinium, they suffer greater oxidative stress under strong light or high-temperature stress than non-symbiotic counterparts

  • The presence of symbiotic algae within larvae has the potential to extend the larval lifespan (Cantin et al 2009; Harii et al 2010). Under stressful conditions, such as high temperatures or excessive light irradiance, symbiotic dinoflagellates might become a source of reactive oxygen species (ROS), which lead to disruption of the symbiosis, or bleaching (Weis 2008)

  • There was no significant difference in the survivorship of P. damicornis larvae among different temperaturetreated groups (Kaplan-Meier test, df = 3, p = 0.99 in 2010, p = 0.40 in 2011, and p = 0.59 in 2012)

Read more

Summary

Introduction

When coral planulae, which use a horizontal mode of symbiont transmission, are inoculated with Symbiodinium, they suffer greater oxidative stress under strong light or high-temperature stress than non-symbiotic counterparts. Dinoflagellate symbionts may become a source of reactive oxygen species (ROS) under stress. 80 % of spawning corals release Symbiodinium-free eggs, and less than 20 % of brooding species release Symbiodinium-free larvae (Baird et al 2009a). The offspring of these corals must acquire symbiotic algae from the environment (horizontal transmission of symbionts) in each generation. Under stressful conditions, such as high temperatures or excessive light irradiance, symbiotic dinoflagellates might become a source of reactive oxygen species (ROS), which lead to disruption of the symbiosis, or bleaching (Weis 2008). Coral planulae that contain Symbiodinium might be more sensitive

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call