Abstract

Objective: To establish a high-throughput system for testing the ability of drugs or monoclonal antibodies to reduce the in vitro formation of cystatin C dimers to identify substances potentially useful for treatment of patients with hereditary cystatin C amyloid angiopathy (HCCAA). Methods: Various combinations of incubation temperature, time period, guanidinium chloride concentration and concentration of cystatin C monomers were tested in low-volume formats to induce dimer formation of recombinant cystatin C. The extent of dimerization was analysed by gel filtration chromatography and agarose gel electrophoresis. Results: A high-throughput system based upon agarose gel electrophoresis was developed and used to test 1040 drugs in a clinical drug library for their capacity to reduce cystatin C dimer formation in vitro. Seventeen substances reducing dimer formation by more than 30% were identified. A similar system for testing the capacity of monoclonal antibodies against cystatin C to reduce the in vitro formation of cystatin C dimers was also developed and used to test a panel of 12 monoclonal antibodies. Seven antibodies reducing dimer formation by more than 30% were identified and the two most potent, Cyst28 and HCC3, reduced dimerization by 75 and 60%, respectively. Conclusion: We constructed a simple high-throughput system for testing the capacity of drugs and monoclonal antibodies to reduce the in vitro formation of cystatin C dimers and several candidates for treatment of HCCAA could be identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.