Abstract

Electroactive microorganisms (EAM), capable of executing extracellular electron transfer (EET) in/out of a cell, are employed in microbial electrochemical technologies (MET) and bioelectronics for harnessing electricity from wastewater, bioremediation and as biosensors. Thus, investigation on EAM is becoming a topic of interest for multidisciplinary areas, such as environmental science, energy and health sectors. Though, EAM are widespread in three domains of life, nevertheless, only a few hundred EAM have been identified so far and hence, the rapid identification of EAM is imperative. In this review, the techniques that are developed for the direct identification of EAM, such as azo dye and WO3 based techniques, dielectrophoresis, potentiostatic/galvanometric techniques, and other indirect methods, such as spectroscopy and molecular biology techniques, are highlighted with a special focus on time required for the detection of these EAM. The bottlenecks for identifying EAM and the knowledge gaps based on the present investigations are also discussed. Thus, this review is intended to encourage researchers for devolving high-throughput techniques for identifying EAM with more accuracy, while consuming less time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.