Abstract

Kinases, which function in numerous cell signaling processes, are among the best characterized groups of client proteins for the 90-kDa heat shock protein (HSP90), a molecular chaperone that suppresses the aggregation and maintains the proper folding of its substrate proteins (i.e., clients). No high-throughput proteomic method, however, has been developed for the characterizations of the interactions between HSP90 and the human kinome. Herein, by employing a parallel-reaction monitoring (PRM)-based targeted proteomic method, we found that 99 out of the 249 detected kinase proteins display diminished expression in cultured human cells upon treatment with ganetespib, a small-molecule HSP90 inhibitor. PRM analysis of kinase proteins in the affinity pull-down samples showed that 86 out of the 120 detected kinases are enriched from the CRISPR-engineered cells where a tandem affinity tag was conjugated with the C-terminus of endogenous HSP90β protein over the parental cells. Together, our results from the two complementary quantitative proteomic experiments offer systematic characterizations about the HSP90-kinase interactions at the entire proteome scale and reveal extensive interactions between HSP90 and kinase proteins in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.