Abstract

Libraries of mixed-metal hydride materials are synthesized on a silicon microfabricated array of "hot-plate" MEMS devices, which allow high-throughput screening using temperature programmed desorption and infrared thermography. The heating plate of the MEMS device is a membrane with low heat capacity, allowing fast and localized temperature control and the extraction of calorimetric data from thermography. The combination of the synthetic method and screening chip allows a fast determination of the desorption temperature and hydrogen content of the materials. Mixed metal hydrides are synthesized directly. The potential of the method is exemplified by presenting results for the sorption properties of Mg xNi 1- x hydride thin-film materials. The results are consistent with the literature, showing the highest hydrogen capacity and desorption temperature for the MgH 2 phase in Mg-rich compositions and the promotion of a lower temperature desorption from the Mg 2NiH 4 phase, with a concomitant reduction in hydrogen capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call