Abstract

High precision laser micromachining requires an exact synchronization of the laser pulse train with the mechanical axes of the motion system to ensure for each single pulse a precise control of the laser spot position - on the target. For ultra short pulsed laser systems this was already demonstrated with a conventional two-axis galvanometer scanner. But this solution is limited by the scanner architecture to a marking speed of about 10m/s with a maximum scan line length of about 100mm. It is therefore not suited for average powers far beyond 10W when working at the optimum point with highest removal rate and machining quality is desired. A way to overcome this limitation is offered by polygon line scanners which are able to realize much higher lateral speeds at large scan line lengths.In this work we will report on the results with a polygon line scanner having a maximum moving spot velocity of 100m/s, a scan line length of 170mm, spot diameters of 45µm (1064nm) and 22µm (532nm) together with a 50W, 10-ps laser system. The precise control of the laser spot position i.e. the synchronization is realized via the new SuperSyncTM technology. Decoating, perforation and 3D patterning will act as benchmark processes to evaluate this scanning technology.High precision laser micromachining requires an exact synchronization of the laser pulse train with the mechanical axes of the motion system to ensure for each single pulse a precise control of the laser spot position - on the target. For ultra short pulsed laser systems this was already demonstrated with a conventional two-axis galvanometer scanner. But this solution is limited by the scanner architecture to a marking speed of about 10m/s with a maximum scan line length of about 100mm. It is therefore not suited for average powers far beyond 10W when working at the optimum point with highest removal rate and machining quality is desired. A way to overcome this limitation is offered by polygon line scanners which are able to realize much higher lateral speeds at large scan line lengths.In this work we will report on the results with a polygon line scanner having a maximum moving spot velocity of 100m/s, a scan line length of 170mm, spot diameters of 45µm (1064nm) and 22µm (532nm) together with a 50W, 10-p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.