Abstract

Sequential decoding can achieve high throughput convolutional decoding with much lower computational complexity when compared with the Viterbi algorithm (VA) at a relatively high signal-to-noise ratio (SNR). A parallel bidirectional Fano algorithm (BFA) decoding architecture is investigated in this paper. In order to increase the utilisation of the parallel BFA decoders, and thus improve the decoding throughput, a state estimation method is proposed which can effectively partition a long codeword into multiple short sub-codewords. The parallel BFA decoding with state estimation architecture is shown to achieve 30–55% decoding throughput improvement compared with the parallel BFA decoding scheme without state estimation. Compared with the VA, the parallel BFA decoding only requires 3–30% computational complexity of that required by the VA with a similar error rate performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.