Abstract

This study used the Illumina MiSeq to analyse compositions and diversities of Aspergillus species in outdoor air. The seasonal air samplings were performed at two locations in Seoul, South Korea. The results showed the relative abundances of all Aspergillus species combined ranging from 0·20 to 18% and from 0·19 to 21% based on the number of the internal transcribed spacer 1 (ITS1) and β-tubulin (BenA) gene sequences respectively. Aspergillus fumigatus was the most dominant species with the mean relative abundances of 1·2 and 5·5% based on the number of the ITS1 and BenA sequences respectively. A total of 29 Aspergillus species were detected and identified down to the species rank, among which nine species were known opportunistic pathogens. Remarkably, eight of the nine pathogenic species were detected by either one of the two markers, suggesting the need of using multiple markers and/or primer pairs when the assessments are made based on the high-throughput sequencing. Due to diversity of species within the genus Aspergillus, the high-throughput sequencing was useful to characterize their compositions and diversities in outdoor air, which are thought to be difficult to be accurately characterized by conventional culture and/or Sanger sequencing-based techniques. Aspergillus is a diverse genus of fungi with more than 300 species reported in literature. Aspergillus is important since some species are known allergens and opportunistic human pathogens. Traditionally, growth-dependent methods have been used to detect Aspergillus species in air. However, these methods are limited in the number of isolates that can be analysed for their identities, resulting in inaccurate characterizations of Aspergillus diversities. This study used the high-throughput sequencing to explore Aspergillus diversities in outdoor, which are thought to be difficult to be accurately characterized by traditional growth-dependent techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.