Abstract
The humoral immune response plays a critical role in controlling infection, and the rapid adaptation to a broad range of pathogens depends on a highly diverse antibody repertoire. The advent of high-throughput sequencing technologies in the past decade has enabled insights into this immense diversity. However, not only the variable, but also the constant region of antibodies determines their in vivo activity. Antibody isotypes differ in effector functions and are thought to play a defining role in elicitation of immune responses, both in natural infection and in vaccination. We have developed an Illumina MiSeq high-throughput sequencing protocol that allows determination of the human IgG subtype alongside sequencing full-length antibody variable heavy chain regions. We thereby took advantage of the Illumina procedure containing two additional short reads as identifiers. By performing paired-end sequencing of the variable regions and customizing one of the identifier sequences to distinguish IgG subtypes, IgG transcripts with linked information of variable regions and IgG subtype can be retrieved. We applied our new method to the analysis of the IgG variable region repertoire from PBMC of an HIV-1 infected individual confirmed to have serum antibody reactivity to the Membrane Proximal External Region (MPER) of gp41. We found that IgG3 subtype frequencies in the memory B cell compartment increased after halted treatment and coincided with increased plasma antibody reactivity against the MPER domain. The sequencing strategy we developed is not restricted to analysis of IgG. It can be adopted for any Ig subtyping and beyond that for any research question where phasing of distant regions on the same amplicon is needed.
Highlights
In the past decade, the development of high-throughput sequencing technologies ( Generation Sequencing, NGS) has largely influenced research possibilities in immunology
The search for potent neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) and ways to elicit them by vaccination has in recent years funneled extensive research that increasingly relies on NGS of the IgG variable region, which enables high-resolution profiling of antibody repertoires and the evolution of neutralizing antibodies over time [3,4,5,6,7,8]
Validation of high-throughput immunoglobulin variable region sequencing with subtype identification
Summary
The development of high-throughput sequencing technologies ( Generation Sequencing, NGS) has largely influenced research possibilities in immunology. Sequencing of whole antibody repertoires has become feasible and affordable, offering new approaches to quantitatively study immune responses [1,2]. The search for potent neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) and ways to elicit them by vaccination has in recent years funneled extensive research that increasingly relies on NGS of the IgG variable region, which enables high-resolution profiling of antibody repertoires and the evolution of neutralizing antibodies over time [3,4,5,6,7,8]. The variable part of an antibody is important, and the different isotypes of the constant region. Antibodies of the same epitope specificity can elicit different effector functions depending on the isotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.