Abstract

BackgroundCD4+ T cells play critical roles in the pathogenesis of IgG4-related disease (IgG4-RD). The aim of this study was to investigate the TCR repertoire of peripheral blood CD4+ T cells in IgG4-RD.MethodsThe peripheral blood was collected from six healthy controls and eight IgG4-RD patients. TCR β-chain libraries of CD4+ T cells were constructed by 5′-rapid amplification of cDNA ends (5′-RACE) and sequenced by Illumina Miseq platform. The relative similarity of TCR repertoires between samples was evaluated according to the total frequencies of shared clonotypes (metric F), correlation of frequencies of shared clonotypes (metric R), and total number of shared clonotypes (metric D).ResultsThe clonal expansion and diversity of CD4+ T cell repertoire were comparable between healthy controls and IgG4-RD patients, while the proportion of expanded and coding degenerated clones, as an indicator of antigen-driven clonal expansion, was significantly higher in IgG4-RD patients. There was no significant difference in TRBV and TRBJ gene usage between healthy controls and IgG4-RD patients. The complementarity determining region 3 (CDR3) length distribution was skewed towards longer fragments in IgG4-RD. Visualization of relative similarity of TCR repertoires by multi-dimensional scaling analysis showed that TCR repertoires of IgG4-RD patients were separated from that of healthy controls in F and D metrics. We identified 11 IgG4-RD-specific CDR3 amino acid sequences that were expanded in at least 2 IgG4-RD patients, while not detected in healthy controls. According to TCR clonotype networks constructed by connecting all the CDR3 sequences with a Levenshtein distance of 1, 3 IgG4-RD-specific clusters were identified. We annotated the TCR sequences with known antigen specificity according to McPAS-TCR database and found that the frequencies of TCR sequences associated with each disease or immune function were comparable between healthy controls and IgG4-RD patients.ConclusionAccording to our study of CD4+ T cells from eight IgG4-RD patients, TCR repertoires of IgG4-RD patients were different from that of healthy controls in the proportion of expanded and coding degenerated clones and CDR3 length distribution. In addition, IgG4-RD-specific TCR sequences and clusters were identified in our study.

Highlights

  • CD4+ T cells play critical roles in the pathogenesis of IgG4-related disease (IgG4-RD)

  • A detailed description of the total number of raw reads, filtered reads, aligned T cell receptor (TCR) sequences, and unique clonotypes of each sample was displayed in Additional file 2. 244,175 ± 47,618 TCR sequences were obtained from each individual

  • We further evaluated the diversity of CD4+ T cell repertoire of each individual based on the Shannon-Wiener index and found that the TCR repertoire diversity was comparable between healthy controls and IgG4-RD patients (Fig. 1c)

Read more

Summary

Introduction

CD4+ T cells play critical roles in the pathogenesis of IgG4-related disease (IgG4-RD). The aim of this study was to investigate the TCR repertoire of peripheral blood CD4+ T cells in IgG4-RD. IgG4-related disease (IgG4-RD) is a newly recognized clinical entity mainly affecting middle-aged to elderly males, characterized by immune-mediated fibro-inflammatory process. CD4+ T cells and B cells play central roles in the pathogenesis of IgG4-RD. During the development of T cells, TCRs are randomly generated through VJ recombination (α chain) or VDJ recombination (β chain), followed by deletion or insertion of non-template nucleotides at junction sites. The diversity of TCRs is predominantly confined to the complementarity-determining regions (CDR). CDR1 and CDR2 domains are encoded by germline V gene segments, while CDR3 domains, the region that directly contacts with peptide antigen, comprise the VJ junction (α chain) or VDJ junction (β chain). CDR3 domains are highly diverse, allowing the recognition of various antigens [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call