Abstract

SUMMARYA key limitation of the widely used CRISPR enzyme S. pyogenes Cas9 is the strict requirement of an NGG protospacer-adjacent motif (PAM) at the target site. This constraint can be limiting for genome editing applications that require precise Cas9 positioning. Recently, two Cas9 variants with a relaxed PAM requirement (NG) have been developed (xCas9 and Cas9-NG), but their activity has been measured at only a small number of endogenous sites. Here, we devise a high-throughput Cas9 pooled competition screen to compare the performance of Cas9 variants at thousands of genomic loci for gene knockout, transcriptional activation, and inhibition. We show that PAM flexibility comes at a substantial cost of decreased DNA targeting and cleavage. Of the PAM-flexible variants, we find that Cas9-NG outperforms xCas9 regardless of genome engineering modality or PAM. Finally, we combine xCas9 mutations with those of Cas9-NG, creating a stronger transcriptional modulator than existing PAM-flexible Cas9 variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.