Abstract

Aim. Implementation of 3D-modeling, molecular dynamics, high-throughput screening and molecular docking for search of new inhibitors of parasitic fungi tubulin. Methods. Protein structures were constructed using I-TASSER server and optimized by Gromacs. Ligands library was prepared in Mopac7 program and screened using UCSF Dock 6. Best ligands were docked in CCDC Gold. Results. It was reconstructed spatial molecular structure for 93 α-, 95 β- and 78 γ-tubulins from 76 species of pathogenic fungi genus: Microsporum, Arthroderma, Histoplasma, Blastomyces, Emmonsia, Uncinocarpus, Coccidioides, Paracoccidioides, Aspergillus, Botrytis cinerea, Sclerotinia, Rhynchosporium, Marssonina, Scedosporium, Fusarium, Gibberella, Candida, Ceraceosorus, Malassezia, Anthracocystis, Melanopsichium, Sporisorium, Ustilago, Cryptococcus, Trichosporon, Mucor, Rhizopus and Lichtheimia. Libraries of 3D-models of parasitic fungi tubulins and perspective ligands were created. Based on results of high-throughput virtual screening, 200 perspective agents were selected from more than 7 million compounds. After resulting molecular docking in CCDC GOLD, we specify 19 leading compounds. We propose these compounds as potent tubulin inhibitors and recommend them for in vitro testing as new fungicides. Conclusions. Based on results of high-throughput virtual screening in Grid, 19 new imidazole inhibitors of parasitic fungi tubulin were selected.Keywords: microtubule, tubulins, fungicides, imidazole derivatives, virtual screening, molecular docking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call