Abstract

Appropriate surface attachment is essential for growing embryonic stem (ES) cells in an undifferentiated state. It is challenging to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a rapid, high-throughput polymerization and screening platform with a comprehensive library of 66 monomer-grafted membrane surfaces, the optimal substrate, N-[3-(dimethylamino)propyl] methacrylamide (DMAPMA) has been identified to support strong attachment, high expansion capacity, and long-term self-renewal of ES cells (up to 7 passages). This monomer-based, chemically defined, scalable, sustainable, relatively inexpensive, covalently grafted, and controllable polymeric substrate provides a new opportunity to manipulate surface chemistry for pluripotent stem culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call