Abstract

BackgroundAutism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies.MethodsWe performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting.ResultsWe identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level.LimitationsIn this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use.ConclusionsThese results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.

Highlights

  • Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available

  • As a matter of fact, duplication of a segment of chromosome 7 at 7q11.23 comprising 26–28 genes, one of the best-characterized copy number variations (CNVs) underlying ASD (7Dup) [3, 4], might yield invaluable insights into ASD pathophysiology, because it is symmetrically opposite to the hemideletion of the same interval that causes Williams–Beuren Syndrome (WBS), a multisystemic disease including hypersociability and selectively spared verbal abilities despite their mild to moderate intellectual disability (ID) and a severely compromised visual–spatial processing and planning [5]

  • Using induced pluripotent stem cell lines (iPSCs) from 7q11.23 microduplication syndrome (7Dup) patients, we discovered that General transcription factor II-I (GTF2I) is responsible for a large part of transcriptional dysregulation, evident at the pluripotent state, which is amplified upon differentiation into neural progenitors

Read more

Summary

Introduction

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26–28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams–Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. As a matter of fact, duplication of a segment of chromosome 7 at 7q11.23 comprising 26–28 genes, one of the best-characterized copy number variations (CNVs) underlying ASD (7Dup) [3, 4], might yield invaluable insights into ASD pathophysiology, because it is symmetrically opposite to the hemideletion of the same interval that causes Williams–Beuren Syndrome (WBS), a multisystemic disease including hypersociability and selectively spared verbal abilities despite their mild to moderate ID and a severely compromised visual–spatial processing and planning [5]. The combination of symmetrically opposite CNVs resulting into symmetrically opposite behavioral phenotypes offers unique opportunities to dissect the dosage-vulnerable circuits that affect language competence and sociability

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.