Abstract

High-repetition-rate lasers present an opportunity to extend ultrafast spectroscopy from a detailed probe of singular model photochemical systems to a routine analysis technique in training machine learning models to aid the design cycle of photochemical syntheses. We bring together innovations in line scan cameras and micro-electro-mechanical grating modulators with sample delivery via high-pressure liquid chromatography pumps to demonstrate a transient absorption spectrometer that can characterize photoreactions initiated with ultrashort ultraviolet pulses in a time scale of minutes. Furthermore, we demonstrate that the ability to rapidly screen an important class of photochemical system, pyrimidine nucleosides, can be used to explore the effect of conformational modification on the evolution of excited-state processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.