Abstract
This work presents new frontal affinity chromatography (FAC) methodologies for high-throughput screening of compound libraries, designed to increase screening rates and improve sensitivity and ruggedness in performance. A FAC column constructed around the enzyme N-acetylglucosaminyltransferase V (GnT-V) was implemented in the identification of potential enzyme inhibitors from two libraries of trisaccharides. Effluent from the FAC column was fractionated, sequentially processed via LC/MS, and referenced to a similar analysis through a control FAC column lacking the enzyme. The resulting multidimensional data sets were compared across corresponding sample and control fractions to identify binders, in a semiautomated approach. A strong binder in the protonated form at m/z 795 was identified from the first library of 81 compounds, exhibiting an estimated Kd value of 0.3 microM. Other binders yielded Kd values ranging from 0.35 to 3.35 microM. To demonstrate the improvement in performance of this FAC-LC/MS approach over the conventional online FAC/MS approach, 15 compounds from this library were blended with a second library of 1000 synthetic trisaccharides and screened against GnT-V. All ligands in the 15-compound set were identified in this larger screen, and no ligands of greater affinity than compound 1 were found. Our results show that FAC-LC/MS is a reliable method for screening large compound libraries directly and useful for large-scale ligand discovery initiatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.