Abstract

Commonly used antiferromagnets contain expensive precious metals, which limits their applicability. Novel materials that are made of abundant elements are thus required for a large scale application, e.g., in spintronic devices. We propose a combinatorial, high-throughput approach based on density functional theory calculations to search for such new antiferromagnets. The power of the method is demonstrated by screening the ternary Heusler compounds for antiferromagnetic phases. We utilize the AFLOWLib, a computational materials database that contains over one million ternary phases. Among these we identify 291 potentially stable magnetic Heusler compounds. By explicitly checking for antiferromagnetic configurations we identify 70 antiferromagnetic Heusler compounds. Comparison with available experimental data shows that the method has excellent selectivity: all known antiferromagnetic Heusler compounds are correctly identified and no material is erroneously assigned an antiferromagnetic ground state. By calculating the N\'eel temperatures we predict 21 antiferromagnetic Heusler compounds with a N\'eel temperature above room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.