Abstract

Pharmacoperone drugs correct the folding of misfolded protein mutants and restore function (i.e., “rescue”) by correcting the routing of (otherwise) misrouted mutants. Assays for pharmacoperones have not been applied to screen large libraries previously. Currently, most pharmacoperones possess intrinsic agonist or antagonist activities since these were identified using high-throughput screens aimed at discovering direct agonists or antagonists. Here we describe an ultra-high-throughput compatible no-wash assay system designed to specifically identify pharmacoperones of the vasopressin type 2 receptor (V2R). Development of such assays is important and novel since useful chemical structures with the ability to control cellular trafficking but lacking intrinsic agonist or antagonist properties have not likely been identified using existing screens. In the described assay, the level of functional human V2R (hV2R) (mutant) present in each test well is quantitated by stimulation with saturating levels of agonist followed by use of a luminescent-based cyclic adenosine monophosphate assay. This allows the assay to identify compounds that increase the trafficking of mutant hV2R[L83Q] in our model system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.