Abstract

AbstractThe feasibility of a high‐throughput robot‐assisted synthesis of complex Cu1‐xAgxInSySe1‐x (CAISSe) quantum dots (QDs) by spontaneous alloying of aqueous glutathione‐capped Ag–In–S, Cu–In–S, Ag–In–Se, and Cu–In–Se QDs is demonstrated. Both colloidal and thin‐film core CAISSe and core/shell CAISSe/ZnS QDs are produced and studied by high‐throughput semiautomated photoluminescence (PL) spectroscopy. The silver‐copper‐mixed QDs reveal clear evidence of a band bowing effect in the PL spectra and higher average PL lifetimes compared to the counterparts containing silver or copper only. The photophysical analysis of CAISSe and CAISSe/ZnS QDs indicates a composition‐dependent character of the nonradiative recombination in QDs. The rate of this process is found to be lower for mixed copper‐silver‐based QDs compared to Cu‐ or Ag‐only QDs. The combination of the band bowing effect and the suppressed nonradiative recombination of CAISSe QDs is beneficial for their applications in photovoltaics and photochemistry. The synergy of high‐throughput robotic synthesis and a high‐throughput characterization in this study is expected to grow into a self‐learning synthetic platform for the production of metal chalcogenide QDs for light‐harvesting, light‐sensing, and light‐emitting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.