Abstract

Inorganic nanoparticles (NPs) are studied as drug carriers, radiosensitizers and imaging agents, and characterizing nanoparticle biodistribution is essential for evaluating their efficacy and safety. Tracking NPs at the single-cell level with current technologies is complicated by the lack of reliable methods to stably label particles over extended durations in vivo. Here we demonstrate that mass cytometry by time-of-flight provides a label-free approach for inorganic nanoparticle quantitation in cells. Furthermore, mass cytometry can enumerate AuNPs with a lower detection limit of ∼10 AuNPs (3 nm core size) in a single cell with tandem multiparameter cellular phenotyping. Using the cellular distribution insights, we selected an amphiphilic surface ligand-coated AuNP that targeted myeloid dendritic cells in lymph nodes as a peptide antigen carrier, substantially increasing the efficacy of a model vaccine in a B16-OVA melanoma mouse model. This technology provides a powerful new level of insight into nanoparticle fate in vivo.

Highlights

  • We show that mass cytometry overcomes challenges in fluorescence-based analysis of autofluorescent tissue cells, and illustrate the value of combined single cell NP detection with antibody-based phenotyping, using insights derived from mass cytometer analysis to select a nanoparticle composition that accumulates in dendritic cells for vaccination

  • We first synthesized AuNPs with comparable inorganic core diameters but three different surface chemistries expected to have distinct biodistributions and cellular uptake in vivo (Fig. 1a): 3-mercapto1-propanesulfonate (MPSA) NPs, coated by a dense layer of short sulfonate-terminated ligands that strongly interact with water; 11-mercapto-1-undecanesulfonate/1-octanethiol (MUS/OT) NPs bearing an amphiphilic mixed ligand shell, which are water soluble but strongly interact with cell membranes;[33,34] and poly(ethylene glycol) NPs sterically stabilized by PEG to reduce opsonization by serum components[35]

  • Gold uptake by macrophages was clearly detectable by mass cytometry across this entire concentration range, whereas NPs at concentrations of 0.1 mg ml À 1 or lower were not detected in cells using flow cytometry (Fig. 2a,b)

Read more

Summary

Introduction

Using the cellular distribution insights, we selected an amphiphilic surface ligand-coated AuNP that targeted myeloid dendritic cells in lymph nodes as a peptide antigen carrier, substantially increasing the efficacy of a model vaccine in a B16-OVA melanoma mouse model This technology provides a powerful new level of insight into nanoparticle fate in vivo. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) enables quantitation of metal contents at the single-cell level with additional insights on sub-cellular localization of NPs, this image-based method suffers from low throughput (tens to hundreds of cells typically analysed) and relatively low sensitivity (requiring millions of atoms per cell)[15,16,17]. Such highly multiparametric detection has offered new insights into the complexity of biology, in applications ranging from deep phenotyping of tumours to immune system signalling pathways[26,27]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.