Abstract

Van der Waals heterostructures offer an additional degree of freedom to tailor the electronic structure of two-dimensional materials, especially for the band-gap tuning that leads to various applications such as thermoelectric and optoelectronic conversions. In general, the electronic gap of a given system can be accurately predicted by using first-principles calculations, which is, however, restricted to a small unit cell. Here, we adopt a machine-learning algorithm to propose a physically intuitive descriptor by which the band gap of any heterostructures can be readily obtained, using group III, IV, and V elements as examples of the constituent atoms. The strong predictive power of our approach is demonstrated by high Pearson correlation coefficient for both the training (292 entries) and testing data (33 entries). By utilizing such a descriptor, which contains only four fundamental properties of the constituent atoms, we have rapidly predicted the gaps of 7140 possible heterostructures that agree well with first-principles results for randomly selected candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.