Abstract

Precise manipulation of microparticles have fundamental applications in the fields of lab-on-a-chip and biomedical engineering. Here, for the first time, we propose a fully operational microfluidic chip equipped with thin magnetic films composed of straight tracks and bends which precisely transports numerous single-particles in the size range of ~ 2.8–20 µm simultaneously, to certain points, synced with the general external three-axial magnetic field. The uniqueness of this design arises from the introduced vertical bias field that provides a repulsion force between the particles and prevents unwanted particle cluster formation, which is a challenge in devices operating in two-dimensional fields. Furthermore, the chip operates as an accurate sensor and detects low levels of proteins and DNA fragments, being captured by the ligand-functionalized magnetic beads, while lowering the background noise by excluding the unwanted bead pairs seen in the previous works. The image-processing detection method in this work allows detection at the single-pair resolution, increasing the sensitivity. The proposed device offers high-throughput particle transport and ultra-sensitive bio-detection in a highly parallel manner at single-particle resolution. It can also operate as a robust single-cell analysis platform for manipulating magnetized single-cells and assembling them in large arrays, with important applications in biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.