Abstract

Fractional motion estimation (FME) significantly enhances video compression efficiency, but its high computational complexity also limits the real-time processing capability. In this brief, we present a VLSI implementation of FME design in High Efficiency Video Coding for ultrahigh definition video applications. We first propose a bilinear quarter pixel approximation, together with a search pattern based on it to reduce the complexity of interpolation and fractional search process. Furthermore, a data reuse strategy is exploited to reduce the hardware cost of transform. In addition, using the considered pixel parallelism and dedicated access pattern for memory, we fully pipeline the computation and achieve high hardware utilization. This design has been implemented as a 65-nm CMOS chip and verified. The measured throughput reaches 995 Mpixels/s for $7680\,\times \,4320~30$ frames/s at 188 MHz, at least 4.7 times faster than prior arts. The corresponding power dissipation is 198.6 mW, with a power efficiency of 0.2 nJ/pixel. Due to the optimization, our work achieves more than 52% improvement on power efficiency, relative to previous works in H.264.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.