Abstract

Powder pattern matching techniques, using all the experimentally measured data points, coupled with cluster analysis, fuzzy clustering and multivariate statistical methods are used, with appropriate visualization tools, to analyse a set of 27 powder diffraction patterns of alumina collected at seven different laboratories on different instruments as part of an International Center for Diffraction Data Grant-in-Aid program. In their original form, the data factor into six distinct clusters. However, when a non-linear shift of the form \Delta \left({2\theta } \right)\, = \,a_0 \, + \,a_1 \sin \theta (wherea0anda1are refinable constants) is applied to optimize the correlations between patterns, clustering produces a large 25-pattern set with two outliers. The first outlier is a synchrotron data set at a different wavelength from the other data, and the second is distinguished by the absence ofKα2lines,i.e.it uses Ge-monochromated incident X-rays. Fuzzy clustering, in which samples may belong to more than one cluster, is introduced as a complementary method of pinpointing problematic diffraction patterns. In contrast to the usual methodology associated with the analysis of round-robin data, this process is carried out in a routine way, with minimal user interaction or supervision, using thePolySNAPsoftware.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call