Abstract

A new approach to conducting bacterial binding assays by using an addressable high density random sequence peptide microarray is described. When bacterial binding is carried out in the presence of a competing excess of corresponding bacterial lipopolysaccharide (LPS), most of the observed bacterial binding is inhibited, suggesting that LPS is the major target of the bacterial binding peptides. Importantly, the amino acid composition of the selected peptides closely resembles the composition of natural antimicrobial peptides. Conjugation of selected peptides to polyvalent nanoparticle scaffold yields constructs that show potent antibacterial agglutination activities. The system is general enough to potentially create antimicrobial agents to virtually any pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.