Abstract

BackgroundWater availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root system architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root architectural traits in breeding programs has been limited by a lack of suitable phenotyping methods. The aim of this research was to develop low-cost high-throughput phenotyping methods to facilitate selection for desirable root architectural traits. Here, we report two methods, one using clear pots and the other using growth pouches, to assess the angle and the number of seminal roots in wheat seedlings– two proxy traits associated with the root architecture of mature wheat plants.ResultsBoth methods revealed genetic variation for seminal root angle and number in the panel of 24 wheat cultivars. The clear pot method provided higher heritability and higher genetic correlations across experiments compared to the growth pouch method. In addition, the clear pot method was more efficient – requiring less time, space, and labour compared to the growth pouch method. Therefore the clear pot method was considered the most suitable for large-scale and high-throughput screening of seedling root characteristics in crop improvement programs.ConclusionsThe clear-pot method could be easily integrated in breeding programs targeting drought tolerance to rapidly enrich breeding populations with desirable alleles. For instance, selection for narrow root angle and high number of seminal roots could lead to deeper root systems with higher branching at depth. Such root characteristics are highly desirable in wheat to cope with anticipated future climate conditions, particularly where crops rely heavily on stored soil moisture at depth, including some Australian, Indian, South American, and African cropping regions.

Highlights

  • Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide

  • Genetic variation for seminal root angle and number In the clear pots, seedling roots grew along the wall and were clearly distinguished from the dark soil

  • At the time of imaging for seminal root angle, the first pair of seminal roots had elongated on each side of the radicle, with an average seminal root angle of 75.5° for the two clear pot experiments

Read more

Summary

Introduction

Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root system architecture has important functional implications for the timing and extent of soil water extraction, yet selection for root architectural traits in breeding programs has been limited by a lack of suitable phenotyping methods. The aim of this research was to develop low-cost high-throughput phenotyping methods to facilitate selection for desirable root architectural traits. Drought is a major limiting factor of wheat (Triticum aestivum L.) production world-wide [1]. Water deficit during critical periods of crop development such as grain filling, can greatly impact yield stability and productivity in rain-fed agricultural systems. Yield is a quantitative trait under complex genetic control, characterized by low heritability and high genotype by environment (G × E) interactions, in drought environments [3]. Physiological approaches based on proxy traits, can offer higher heritability and lower G × E interactions than selection

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.